Abstract
Self-propelled nanomotors possess strong propulsion and penetration abilities, which can increase the efficiency of cellular uptake of nanoparticles and enhance their cytotoxicity against tumor cells, opening a new path for treating major diseases. In this study, the concept of driving nanomotors by alternately stretching and contracting a temperature-sensitive polymer (TS-P) chain is proposed. The TS-Ps are successfully linked to one side of Cu2-xSe@Au (CS@Au) nanoparticles to form a Janus structure, which is designated as Cu2-xSe@Au-polymer (CS@Au-P) nanomotors. Under near-infrared (NIR) light irradiation, Cu2-xSe nanoparticles generate photothermal effects that change the system temperature, triggering the alternation of the TS-P structure to generate a mechanical force that propels the motion of CS@Au-P nanomotors. The nanomotor significantly improved the cellular uptake of nanoparticles and enhanced their penetration and accumulation in tumor. Furthermore, the exceptional photothermal conversion efficiency of CS@Au-P nanomotors suggests their potential as nanomaterials for photothermal therapy (PTT). The prepared material exhibited good biocompatibility and anti-tumor effects both in vivo and in vitro, providing new research insights into the design and application of nanomotors in tumor therapy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have