Abstract
An efficient numerical method based on Lobatto quadrature analysis is adopted for a rigorous analysis of temperature in elastohydrodynamic lubrication (EHL) line contacts. Temperature distributions are calculated for maximum Hertzian pressures and rolling speeds varying between 0.5 to 2.0 GPa and 1 to 30 m/s, respectively. Significant mid-film temperature and surface temperature increases have been observed at higher rolling speeds with an increase in loads and slip ratios. Results have been compared with the results of Manton, S. M., O'Donoghue, J. P. and Cameron, A., Temperatures at lubricated rolling/sliding contacts. Proceedings of the Institution of Mechanical Engineers, 1967–68, 182(417), 813–824. An empirical equation is presented for the prediction of non-dimensional maximum mid-film temperature in the contact zone in terms of the dimensionless thermal loading parameter Q, dimensionless load W and slip S, as: T ̄ md=11.08W 0.249S 0.0265e 0.201Q
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.