Abstract
Many animals are able to detect small temperature differences and show strong temperature preferences during periods of rest and activity. Mammals inhabiting the subterranean ecotope can adapt their digging and foraging activity in shallow tunnels temporarily to periods with favourable ambient air and soil temperatures. Moreover, subterranean mammals have the unique opportunity to select for their nests in soil depths with certain, daily and seasonally constant temperatures. Our knowledge on nest temperatures in several species of subterranean mammals is based on measurements of temperatures in empty nests. We can expect, however, that the temperature in an occupied nest is higher (due to the “igloo effect”). We performed two experiments regarding the temperature preference in five species of African mole-rats (Bathyergidae, Rodentia: Fukomys anselli, F. mechowii, F. micklemi, Heliophobius argenteocinereus, and Heterocephalus glaber). In a first experiment, the animals were tested pairwise (except for the solitary silvery mole-rats, H. argenteocinereus, that were tested singly) in an apparatus consisting of seven chambers with a temperature gradient ranging between 16 and 37°C (air temperature). While the smaller species (<110g; F. anselli, F. micklemi, H. glaber) chose chambers with average air temperatures around 29°C, the larger mole-rats rested preferably at lower temperatures of approximately 25.6°C (F. mechowii) and 27.7°C (H. argenteocinereus). A strong negative correlation between body mass and preferred air temperature was detected across species. Thus, the results comply with the surface-volume-rule. Contrary to expectations, temperature preference of naked mole-rats (H. glaber) did not deviate from those of furred small mole-rats, but followed the general trend with smaller species preferring higher temperatures. In a second experiment, Ansell's mole-rats (F. anselli) were tested in groups of four, six and nine animals and the preferred temperatures were compared to the values obtained for pairs. The preferred mean air temperatures did not differ among the groups of different sizes. We discuss our findings in the light of ecophysiological adaptations to cope with the ambient conditions proposed by the “thermal stress hypothesis”. Furthermore, we suggest that while soil temperature is decisive during digging as the mole-rats warm up or cool due to tight contact between body and soil (conduction), resting animals prevent heat loss through conduction by building a nest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.