Abstract

Behavioural thermoregulation by ectotherms is an important mechanism for maintaining body temperatures to optimise physiological performance. Experimental studies suggest that nocturnal basking by Krefft's river turtles (Emydura macquarii krefftii) in the tropics may allow them to avoid high water temperatures, however, this hypothesis has yet to be tested in the field. In this study, we examined the influence of environmental temperature on seasonal and diel patterns of basking in E. m. krefftii in tropical north Queensland, Australia. Wildlife cameras were used to document turtle basking events for seven consecutive days and nights for each month over a year (April 2020–March 2021). Air and water temperatures were recorded simultaneously using temperature loggers. We used a negative binomial mixed effects model to compare mean basking durations (min) occurring among four environmental temperature categories based on population thermal preference (26 °C): 1) air temperature above and water temperature below preferred temperature; 2) air temperature below and water temperature above preferred temperature; 3) air and water temperatures both above preferred temperature; and 4) air and water temperatures both below preferred temperature. Basking behaviour was influenced significantly by the relationship between air and water temperature. During the day, turtles spent significantly less time basking when both air and water temperatures were above their preferred temperatures. Conversely, at night, turtles spent significantly more time basking when water temperatures were warm and air temperatures were cool relative to their preferred temperature. This study adds to the growing body of work indicating pronounced heat avoidance as a thermoregulatory strategy among tropical reptile populations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.