Abstract

Conservation of biodiversity relies heavily on protected areas but their role and effectiveness under a warming climate is still debated. We estimated the climate-driven changes in the temperature niche compositions of bird communities inside and outside protected areas in southern Canada. We hypothesized that communities inside protected areas include a higher proportion of cold-dwelling species than communities outside protected areas. We also hypothesized that communities shift to warm-dwelling species more slowly inside protected areas than outside. To study community changes, we used large-scale and long-term (1997-2019) data from the Breeding Bird Survey of Canada. To describe the temperature niche compositions of bird communities, we calculated the community temperature index (CTI) annually for each community inside and outside protected areas. Generally, warm-dwelling species dominated communities with high CTI values. We modeled temporal changes in CTI as a function of protection status with linear mixed-effect models. We also determined which species contributed most to the temporal changes in CTI with a jackknife approach. As anticipated, CTI was lower inside protected areas than outside. However, contrary to our expectation, CTI increased faster over time inside than outside protected areas and warm-dwelling species contributed most to CTI change inside protected areas. These results highlight the ubiquitous impacts of climate warming. Currently, protected areas can aid cold-dwelling species by providing habitat, but as the climate warms, the communities' temperature compositions inside protected areas quickly begin to resemble those outside protected areas, suggesting that protected areas delay the impacts of climate warming on cold-dwelling species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.