Abstract

The European protected-area network will cease to be efficient for biodiversity conservation, particularly in the Mediterranean region, if species are driven out of protected areas by climate warming. Yet, no empirical evidence of how climate change influences ecological communities in Mediterranean nature reserves really exists. Here, we examine long-term (1998–2011/2012) and short-term (2011–2012) changes in the butterfly fauna of Dadia National Park (Greece) by revisiting 21 and 18 transects in 2011 and 2012 respectively, that were initially surveyed in 1998. We evaluate the temperature trend for the study area for a 22-year-period (1990–2012) in which all three butterfly surveys are included. We also assess changes in community composition and species richness in butterfly communities using information on (a) species’ elevational distributions in Greece and (b) Community Temperature Index (calculated from the average temperature of species' geographical ranges in Europe, weighted by species' abundance per transect and year). Despite the protected status of Dadia NP and the subsequent stability of land use regimes, we found a marked change in butterfly community composition over a 13 year period, concomitant with an increase of annual average temperature of 0.95°C. Our analysis gave no evidence of significant year-to-year (2011–2012) variability in butterfly community composition, suggesting that the community composition change we recorded is likely the consequence of long-term environmental change, such as climate warming. We observe an increased abundance of low-elevation species whereas species mainly occurring at higher elevations in the region declined. The Community Temperature Index was found to increase in all habitats except agricultural areas. If equivalent changes occur in other protected areas and taxonomic groups across Mediterranean Europe, new conservation options and approaches for increasing species’ resilience may have to be devised.

Highlights

  • Major changes in climate worldwide have been identified as the cause of recent shifts observed in species’ geographical distributions [1,2,3,4,5]

  • There is a documented pattern where widespread species or species associated with warm conditions are becoming more abundant due to warming, at the expense of habitat specialists or species restricted to higher latitudes or elevations [4,11,12]

  • The PERMANOVA analysis for the 13 year period indicated a significant effect of the year x transect interaction on community composition (F1,168 = 1.2, P = 0.01, Table S2)

Read more

Summary

Introduction

Major changes in climate worldwide have been identified as the cause of recent shifts observed in species’ geographical distributions [1,2,3,4,5]. Many such shifts follow a poleward range expansion pattern [6,7,8]. Some evidence that the species composition of Mediterranean butterfly communities has not responded to climate warming as rapidly as expected based on the biogeographic associations of species [17] suggests that these communities may be comparatively resilient to climate change, but more research is needed to test this hypothesis. There is no empirical evidence on how climate change during the last decade has influenced species communities in Mediterranean nature reserves: precisely this kind of information is likely to be increasingly important for conservation planning in a global climate change scenario

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.