Abstract

Temperature may affect the production of saxitoxin (STX) and its derivatives (STXs); however, this is still controversial. Further, STX-biosynthesis gene regulation and the relation of its toxicity with temperature are not clearly understood. In the present study, we evaluated the effects of different temperatures (12 °C, 16 °C, and 20 °C) on the growth, toxin profiles, and expression of two core STX-biosynthesis genes, sxtA and sxtG, in the toxic dinoflagellate Alexandrium pacificum Alex05, isolated from Korean coasts. We found that temperature significantly affected cell growth, with maximum growth recorded at 16 °C, followed by 20 °C and 12 °C. HPLC analysis revealed mostly 12 of STXs from the tested cultures. Interestingly, the contents of STXs increased in the cells cultured at 16 °C and exposed to cold stress, compared to the 20 °C culture and heat stress; however, toxin components were much more diverse under heat stress. These toxin profiles generally matched with the sxtA and sxtG expression levels. Incubation at lower temperatures (12 °C and 16 °C) and exposure to cold stress increased sxtA and sxtG expressions in the cells, whereas heat stress showed little change or downregulated the transcription of both genes. Principal component analysis (PCA) showed low correlation between STXs eq and expressional levels of sxtA and sxtG in heat-stressed cells. These results suggest that temperature might be a crucial factor affecting the level and biosynthesis of STXs in marine toxic dinoflagellates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call