Abstract

The nanostructure dimensions and regularity of the hexagonal arrangement of nanopores formed by self-organized anodization of aluminium in a 20 wt.% sulphuric acid was investigated at various cell potentials and temperatures. The quantitative analyses of defects and Fourier transforms (FFT) performed from SEM images showed that regularity of nanopores arrangement can be improved by increasing anodizing potential, independently of the anodizing temperature. The best result in controlled anodization of aluminium can be obtained at 25 V and the temperature of 1 °C. The pore size and interpore distance distribution diagrams constructed for 1000 independent measurements showed that increasing uniformity of pore diameter and interpore distance is directly responsible for improvement of the regularity of hexagonal arrangement of nanopores observed with increasing anodizing potential at temperatures of −8 or 1 °C. At 25 V and independently of the anodizing temperature, the reduced number of generated defects is predominant factor improving regularity of the nanopore arrangement. The temperature influence on the lattice data, porosity of the nanostructure and real current density at the bottom of nanopores have been demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.