Abstract
We report electronic Raman scattering measurements of Sr(Fe$_{1-x}$Co$_x$)$_2$As$_2$ single crystals in their magnetic - Spin Density Wave (SDW) phase. The spectra display multiple, polarization-resolved SDW gaps as expected in a band-folding itinerant picture for a multiband system. The temperature dependence of the SDW gaps reveals an unusual evolution of the reconstructed electronic structure with at least one gap being activated only well below the magnetic SDW transition $T_N$. A comparison with temperature dependent Hall measurements allows us to assign this activated behavior to a change in the Fermi surface topology deep in the SDW phase, which we attribute to the disappearance of a hole-like Fermi pocket. Our results highlight the strong sensitivity of the low energy electronic structure to temperature in iron-arsenide superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.