Abstract
This technical brief addresses an elementary analytic procedure for solving approximately the quasi-1D heat conduction equation (a generalized Airy equation) governing the annular fin of hyperbolic profile. The importance of this fin configuration stems from the fact that its geometrical shape and heat transfer performance are reminiscent of the annular fin of convex parabolic profile, the so-called optimal annular fin. To avoid the disturbing variable coefficient in the quasi-1D heat conduction equation, usage of the mean value theorem for integration is made. Thereafter, invoking a coordinate transformation, the product is a differential equation, which is equivalent to the quasi-1D heat conduction equation for the simple straight fin of uniform profile. The nearly exact analytic temperature distribution is conveniently written in terms of the two controlling parameters: the normalized radii ratio c and the dimensionless thermogeometric parameter M2, also called the enlarged Biot number. For engineering analysis and design, the estimates of temperatures and heat transfer rates for annular fins of hyperbolic profile owing realistic combinations of c and M2 give evidence of good quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.