Abstract

In the teaching of annular fins of rectangular profile, the main obstacle lies in solving the quasi one-dimensional heat conduction equation, the modified Bessel equation of first kind. In the modified Bessel equation, the variable coefficient [Formula: see text] multiplying the first order derivative of temperature [Formula: see text] is problematic. The principal objective of the present paper on engineering education is to solve the modified Bessel equation of first kind in approximate analytical form. Specifically, we seek to apply the mean value theorem for integrals to the variable coefficient [Formula: see text], viewed as an auxiliary function in the domain of the annular fin extending from the inner radius [Formula: see text] to the outer radius [Formula: see text]. It is demonstrated in a convincing manner that approximate analytical temperature distributions having exponential functions are easy to obtain without resorting to the exact analytical temperature distribution embodying four modified Bessel functions of first kind. Furthermore, the easiness in calculating heat transfer rates in annular fins of rectangular profile for realistic combinations of the two controlling parameters: the normalized radius ratio and the dimensionless thermo-geometrical parameter is verifiable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.