Abstract
We proposed the detection mechanism of the micro-levels of temperature gradient in a micro-electromechanical system using the unidirectional rotation of cholesteric-liquid crystal (Ch-LC) droplets. Ch-LC droplets in the presence of an isotropic phase subjected to a heat flux rotate with a speed proportional to the magnitude of the temperature gradient. We further quantified the temperature gradient-to-torque conversion efficiency to apply the thermomechanical cross-correlation to the detection of temperature gradient. Then, we observed the rotational behavior of Ch-LC droplets after introducing them onto model devices containing patterned Au thin-film electrodes. Direct electric current applied to these Au electrodes results in unidirectional rotation of the Ch-LC droplets in response to heat flux generated from the Au electrodes. By evaluating the possible temperature gradient detection resolution using Ch-LC droplet rotation, we show that Ch-LC droplets can achieve both high spatial resolution (~ 10 µm) and high detection accuracy (~ 0.1 mK/µm).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.