Abstract

The interaxle torque distribution of off-road vehicle is interfered with temperature field variation of limited slip clutch during long-time sliding, which is controlled by actual heat flux input. The equivalent heat dissipation model is created based on the suggested calculation method of convective heat transfer equivalent coefficient in various lubrication phases. Further, thermal equilibrium equations of friction pair nodes are solved to produce the temperature field calculation model of dynamic heat flux partition. A clutch sliding bench is set up to verify and analyze the effect of heat flux partition on temperature field by organizing different operating conditions. The results demonstrate that the temperature difference of contact surface calculated by the constant heat flux partition model increases significantly along with sliding time and heat flux. In addition, the deviations of temperature rising rate at stage A and average temperature at stage B of separator plate higher than the experimental result also increases. On the contrary, the decrease value of actual input heat flux of separator plate from initial to steady state gradually increases with the increase of relative speed difference in dynamic heat flux partition model. The calculation deviations of temperature rising rate and average temperature are less than 0.1°C/s and 3°C, respectively. This model offers a novel approach for calculating clutch temperature field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call