Abstract

A cost effective directional solidification (DS) technique is one of the main methods to produce multi-crystalline silicon (mc-Si) ingots for solar cells. A detailed understanding of the DS process is very important to control the formation and distribution of impurities, precipitates, thermal stress and dislocation defects in an ingot. All these factors have direct effects on the solar cells efficiency. The quality of crystal grown by DS is largely determined by the temperature field. In order to optimize the technique parameters and obtain high quality silicon ingots, the temperature fields with different heat transfer coefficients at different positions have been calculated during the silicon DS process. The influence of the heat transfer coefficients at the ingot top(ht), the ingot bottom (hb), and between ingot and crucible (hs) on the DS process of mc-Si have been analyzed. The calculation results may provide important theoretical basis for optimizing technological recipe in the productive practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call