Abstract

Estimating deep geothermal reservoir temperatures is an essential mission of geothermal exploration and development. The thermal reservoir temperature estimated directly using geothermometry without comparative analysis is often far from the actual temperature. In this paper, taking the typical geothermal systems in the Xiamen Island–Zhangzhou area of southeastern China as an example, different methods such as a water–rock equilibrium analysis, SiO2 geothermometer, multi-mineral equilibrium diagram, and silica-enthalpy mixing model are used to make a quantitative and qualitative analysis of the chemical equilibrium of minerals and fluids in the geothermal system. Finally, the applicability of different methods was compared and analyzed, and the geothermal reservoir temperature was estimated using the appropriate method. The results show that the calculated results of the Si-enthalpy mixing model of a typical geothermal system in southeastern China are significantly high. At the same time, the SiO2 geothermometer (without vapor loss), which is closest to the results of the multi-mineral equilibrium diagram, was chosen as the geothermal reservoir temperature of the geothermal system in the study area. This study can provide a reference for the future selection of methods of deep geothermal reservoir temperature estimation in similar areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call