Abstract
Ionic liquid ion sources are expected to be used in a wide range of applications such as space electric propulsion and focused ion beam micromachining. It is known that the backstreaming of secondary charged species generated by ion beam impacts can cause unexpected temperature rise and chemical changes in ionic liquids. This paper reports on results of heating experiments using a sharp needle emitter wetted with an ionic liquid, 1-ethyl-3-methyl imidazolium bis(trifluoromethanesulfonyl)amide, at temperatures in a range from room temperature to 120 °C. Current measurements show that positive and negative electrospray currents from the heated emitter increased as the temperature increased. Time-of-flight (TOF) mass spectrometric measurements reveal that the beam composition changed significantly with increasing temperature, indicating that charged droplets as well as ions were emitted from the heated emitter. The TOF data show that a significant fraction of the current is due to droplets at higher temperatures. On the basis of the results obtained, the size and charge of the emitted droplets are discussed. The beam is roughly estimated to contain charged droplets with a diameter of around 20 nm at 120 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.