Abstract

Abstract The electrochemical CO2 reduction reaction (CO2RR) has gathered widespread attention in the past decade as an enabling component to energy and fuel sustainability. Copper (Cu) is one of the few electrocatalysts that can convert CO2 to higher-order hydrocarbons. We report the CO2RR on polycrystalline Cu from 5 °C to 45 °C as a function of electrochemical potential. Our result shows that selectivity shifts toward CH4 at low temperature and H2 at high temperature at the potential values between −0.95 V and −1.25 V versus reversible hydrogen electrode (RHE). We analyze the activation energy for each product and discuss the possible underlying mechanism based on their potential dependence. The activation barrier of CH4 empirically obeys the Butler–Volmer equation, while C2H4 and CO show a non-trivial trend. Our result suggests that the CH4 production proceeds via a classical electrochemical pathway, likely the proton-coupled electron transfer of surface-saturated COad, while C2H4 is limited by a more complex process, likely involving surface adsorbates. Our measurement is consistent with the view that the adsorbate–adsorbate interaction dictates the C2+ selectivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.