Abstract

Using a computer-controlled resonant-bar apparatus at frequencies near 5 kHz, we determined the temperature-dependent (86–732 K) Young's modulus of a ceramic-ceramic composite with a 0.30 volume fraction of SiC whiskers in an Al2O3 matrix. Using a megahertz-frequency pulse-echo method, it was verified that the composite shows little anisotropy (variation of the elastic properties with direction). Using a scattered-plane-wave ensemble-average method, we modelled the ambient-temperature elastic constants and found good model-observation agreement. To model the behaviour of the Young's modulus with temperature, Varshni's three-parameter relationship for Einstein-oscillator monocrystals was used. Again, good model-observation agreement was found. The mechanical-loss spectrum showed no remarkable features, indicating good whisker-matrix interface properties up to 732 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.