Abstract
Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and the quasi-linear viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37, 27, and 17 °C (Group I, n=6), or (2) 42, 32, and 22 °C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.