Abstract

There is still no agreement on the nature of tissues' viscoelasticity and on its reliable modeling. We speculate that disagreements between previous observations stem from difficulties of separating between viscoelastic and preconditioning effects, since both are manifested by similar response features. Here, this and related issues were studied in the tendon as a prototype for other soft tissues. Sheep digital tendons were preconditioned under strain that was higher by 1% than the one used in subsequent testing. Each specimen was then subjected to stress relaxation, and quick release or creep. A stochastic microstructural viscoelastic theory was developed based on the collagen fibers' properties and on their gradual recruitment with stretch. Model parameters were estimated from stress relaxation data and predictions were compared with the creep data. Following its validation, the new recruitment viscoelasticity (RVE) model was compared, both theoretically and experimentally, with the quasilinear viscoelastic (QLV) theory. The applied preconditioning protocol produced subsequent pure viscoelastic response. The proposed RVE model provided excellent fit to both stress relaxation and creep data. Both analytical and numerical comparisons showed that the new RVE theory and the popular QLV one are equivalent under deformation schemes at which no fibers buckle. Otherwise, the equivalence breaks down; QLV may predict negative stress, in contrast to data of the quick release tests, while RVE predicts no such negative stress. The results are consistent with the following conclusions: (1) fully preconditioned tendon exhibits pure viscoelastic response, (2) nonlinearity of the tendon viscoelasticity is induced by gradual recruitment of its fibers, (3) a new structure-based RVE theory is a reliable representation of the tendon viscoelastic properties under both stress relaxation and creep tests, and (4) the QLV theory is equivalent to the RVE one (and valid) only under deformations in which no fibers buckle. The results also suggest that the collagen fibers themselves are linear viscoelastic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.