Abstract

Improved knowledge of the influence of temperature upon layered perovskites is essential to enable perovskite-based devices to operate over a broad temperature range and to elucidate the impact of structural changes upon the optoelectronic properties. We examined the Ruddlesden-Popper layered perovskite 2-thiophenemethylammonium lead iodide (ThMA2PbI4) and observed a structural phase transition between a high- and a low-temperature phase at 220 K using temperature-dependent X-ray diffraction, UV-visible absorption, and photoluminescence (PL) spectroscopy. The structural phase transition altered the tilt pattern of the inorganic octahedra layer, modifying the absorption and PL spectra. Further, we found a narrow and intense additional PL peak in the low-temperature phase, which we assigned to radiative emission from a defect-bound exciton state. In both phases we determined the thermal expansion coefficient and found values similar to those of cubic 3D perovskites, i.e., larger than those of typical substrates such as glass. These results demonstrate that the organic spacer plays a critical role in controlling the temperature-dependent structural and optoelectronic properties of layered perovskites and suggests more widely that strain management strategies may be needed to fully utilize layered perovskites in device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.