Abstract
Two-dimensional (2D) lead halide perovskite materials are solution-processable semiconductor materials, which would find promising applications in optoelectronic devices. The fundamental understanding of the structural phase transition in two-dimensional perovskites is of great importance for fully exploiting their potential applications in electronic and optoelectronic devices. Here, we report on how the external electric field affects the structural phase transition in 2D perovskite (BA)2PbI4 microplates via temperature-dependent photoluminescence spectroscopy. A high-temperature phase and a low-temperature phase can coexist in a wider range of temperatures. The external electric field would enhance the phase transition to the dominant phase depending on the surrounding temperature. This field-induced phase transition might be ascribed to the release of strain in the perovskite microplate induced by the applied electric field, leading to the change in the structural phase transition temperature. Our findings are of great significance not only to the fundamental understanding of phase transition but also to the design and optimization of two-dimensional perovskite based electronic and optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.