Abstract

This study aims to investigate the thermomechanical properties of vanadium dioxide (VO2) thin films. A VO2 thin film was simultaneously deposited on B270 and H-K9L glass substrates by electron-beam evaporation with ion-assisted deposition. Based on optical interferometric methods, the thermal–mechanical behavior of and thermal stresses in VO2 films can be determined. An improved Twyman–Green interferometer was used to measure the temperature-dependent residual stress variations of VO2 thin films at different temperatures. This study found that the substrate has a great impact on thermal stress, which is mainly caused by the mismatch in the coefficient of thermal expansion (CTE) of the film and the substrate. By using the dual-substrate method, thermal stresses in VO2 thin films from room temperature to 120 °C can be evaluated. The thermal expansion coefficient is 3.21 × 10−5 °C−1, and the biaxial modulus is 517 GPa.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.