Abstract

The junction temperature rise may not only affect its output power, slope efficiency, threshold current and lifetime, but also will cause the spectral broadening and wavelength shift in a high power semiconductor laser. Therefore, thermal management becomes one of the main problems in research and development of pump laser. In this paper the physical model of the noise power spectrum and junction temperature variation is first established; according to the compression sensing theory, and after sparsing the measured aliasing composite noise signal containing Gaussian white noise and 1/f noise, the basic pursuit denoising algorithm is used to do denoising; through changing the iterations times of the used algorithm and the size of measurement matrix, the curves of the ration between noise voltage power spectrum and junction temperature variation are obtained, thereby avoiding the complexity of direct measurement of the junction temperature. The numerical estimation results can better guid us in doing the thermal management work in high power semiconductor lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.