Abstract

From the temperature dependent phononic studies of few layered liquid phase exfoliated MoS2 nanosheets we find that the E12g (in-plane) and A1g (out-of-plane) Raman modes follow red shift with increase in temperature and exhibits non-linear temperature dependence in the entire temperature range (80 to 600 K). The first-order temperature coefficients for E12g and A1g modes are found to be -0.0133 cm-1K-1 and -0.0092 cm-1K-1, respectively. The physical origin of the non-linear temperature dependence is analyzed using an analytical model that includes contribution of the thermal expansion and an-harmonic effects to the lattice potential. Our analysis suggests that the non-linear temperature dependence of E12g and A1g modes mainly originates from the an-harmonic contributions from three-phonon and four-phonon scattering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.