Abstract

AbstractA temperature dependent fracture toughness model for whisker‐reinforced ceramic matrix composites was developed in this study, which considers the effects of matrix fracture toughness, residual thermal stress, crack bridging, crack deflection, and their temperature dependence. Its predicted results were compared with the fracture toughness of six types of whisker‐reinforced ceramic matrix composites at different temperatures, and good agreement between predicted results and experimental results is obtained. Furthermore, based on this model, we systematically analyzed the effects of the volume fraction and aspect ratio of whisker, Young's modulus of matrix and whisker, thermal expansion coefficient difference, stress‐free temperature, the ratio between the fracture energy of matrix and that of interface, on their temperature dependent fracture toughness for the first time. Finally, insights and suggestions which could help to optimize and improve the composite fracture toughness at different temperatures are provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.