Abstract

Temperature dependence ofin situfiber strength, effective interface shear stress, Young's modulus of matrix, and matrix fracture energy in a polymer-infiltrationpyrolysis (PIP)-processed two-dimensional plain-woven fabric carbon-coated Nicalon™ SiC fiber-reinforced SiC matrix composite was studied through a tensile test in air at 298 (room temperature), 800, and 1200 K.In situfiber strength and effective interface shear stress were determined by fracture mirror size and fiber pullout length measurements, respectively. The fiber strength was insensitive to test temperature up to 800 K but dropped significantly at 1200 K. Conversely, the interface shear stress showed a strong temperature dependence, decreasing at 800 K and drastically increasing at 1200 K. The temperature dependence of both values was reasonably explained. Temperature dependence of Young's modulus of matrix was derived from Young's modulus of the composite and fiber and ranged from ≈40 to ≈38 GPa. Matrix fracture energy was also determined from the transverse matrix cracking stress and ranged from ≈16 to ≈5.5 J/m2. Both Young's modulus of matrix and the matrix fracture energy showed only slight temperature dependence up to 800 K; however, both values decreased significantly at 1200 K.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.