Abstract
The electrosynthesis of multi-carbon chemicals such as glyoxylic acid (GX) and glycolic acid (GC) from oxalic acid (OA) offers a feasible pathway to achieve sustainable chemical production, especially when coupled with the electroreduction of CO2 to form OA. Here, we demonstrate a series of gallium tin oxide catalysts for selective, controlled OA electroreduction to GX and GC in acidic media. The product distribution can be tuned by changing the reaction temperatures. At room temperature using the GaSnOx/C catalyst, GX can be obtained with a GX Faradaic efficiency (FEGX) of 92.7% at −0.7 V vs RHE and a GX current density (jGX) of −100.2 mA cm–2. At a raised temperature of 80 °C using the GaSnOx/C catalyst, a GC Faradaic efficiency (FEGC) of 91.7% at −0.8 V vs RHE can be obtained. The accelerated OA electroreduction results from the Ga/Sn synergy in the catalysts. A proper Ga/Sn ratio not only enriches OA adsorption and enhances surface binding of intermediates, but also ensures catalyst stability in acidic media.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.