Abstract

This paper demonstrates the transport of electron and hole carriers in two distinct hydrogenated amorphous semiconductor materials at different temperatures. Compared to crystalline materials, the amorphous semiconductors differ structurally, optically and electrically, hence the nature of carrier transport through such amorphous materials differ. Materials like hydrogenated amorphous silicon and amorphous IGZO have been used for the study of temperature dependent carrier transport in this paper. Simulation results have been presented to show the variation of free electron and hole concentration, trapped electron and hole concentration with energy at 300K for both the materials. The change in mobility with a change in the Fermi level has been plotted for different temperatures. The effect of temperature on Brownian motion mobility of electrons and holes in hydrogenated amorphous silicon and amorphous IGZO has been demonstrated towards the end of this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.