Abstract

Intentional oxidation of an As2-decapped (100) In0.57Ga0.43As substrate by additional H2O dosing during initial Al2O3 gate dielectric atomic layer deposition (ALD) increases the interface trap density (Dit), lowers the band edge photoluminescence (PL) intensity, and generates Ga-oxide detected by X-ray photoelectron spectroscopy (XPS). Aberration-corrected high resolution transmission electron microscopy (TEM) reveals formation of an amorphous interfacial layer which is distinct from the Al2O3 dielectric and which is not present without the additional H2O dosing. Observation of a temperature dependent border trap response, associated with the frequency dispersion of the accumulation capacitance and conductance of metal-oxide-semiconductor (MOS) structures, is found to be correlated with the presence of this defective interfacial layer. MOS capacitors prepared with additional H2O dosing show a notable decrease (∼20%) of accumulation dispersion over 5 kHz to 500 kHz when the measurement temperature decreases from room temperature to 77 K, while capacitors prepared with an abrupt Al2O3/InGaAs interface display little change (<2%) with temperature. Similar temperature-dependent border trap response is also observed when the (100) InGaAs surface is treated with a previously reported HCl(aq) wet cleaning procedure prior to Al2O3 ALD. These results point out the sensitivity of the temperature dependence of the border trap response in metal oxide/III-V MOS gate stacks to the presence of processing-induced interface oxide layers, which alter the dynamics of carrier trapping at defects that are not located at the semiconductor interface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.