Abstract

We studied the temperature dependences of line widths and peak positions of optical absorptions due to the hydrogen bound to point defects and acceptors in Si. Specimens were prepared from floating-zone-grown Si crystals of high-purity and of p-type, doped with group III acceptors. They were doped with H by heating at 1300°C in H 2 gas followed by quenching. The former specimen was then irradiated with 3 MeV electrons at RT to form complexes of H and point defects and the latter specimens were annealed at 150°C to form H–acceptor pairs. We measured their optical absorption spectra by an FT-IR spectrometer in the temperature range of 6 K and RT. Peaks due to localized vibrational modes of H bound to acceptors and point defects were well fitted with Lorentzian line shapes. The temperature dependences of those line widths and peak positions were analyzed with the dephasing model proposed by Persson and Ryberg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.