Abstract

The temperature (T) dependence of the Seebeck coefficient (S) for single-wall carbon nanotube (SWCNT) bundles was systematically investigated as a function of the chemical potential (μ) through theoretical simulations employing non-equilibrium Green’s function theory. The bundles were modeled as laterally aligned parallel circuits of semiconducting and metallic SWCNTs. The T dependence of S varied substantially with μ and with metallic SWCNT content. The calculated results semi-quantitatively reproduced the typical behavior observed experimentally for SWCNT films with chemical doping reported previously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call