Abstract

We calculate the order parameter (spontaneous polarization) and the inverse dielectric susceptibility at various temperatures in the ferroelectric phase of LiNbO3 for its ferroelectric-paraelectric phase transition (TC=1260K) using the Landau phenomenological model. For this calculation, the Raman frequencies of the soft optic mode (TO1) are used as the order parameter and the fitting procedure is employed for both the order parameter and the inverse dielectric susceptibility by means of the observed data from the literature. The temperature dependences of the damping constant and the inverse relaxation time are also computed using the pseudospin-phonon coupled model and the energy fluctuation model for the ferroelectric phase of LiNbO3. The activation energy is deduced from the damping constant for both models studied and compared with the kBTC value of LiNbO3.We find that the order parameter (Raman frequency of the TO1 mode) and the inverse dielectric susceptibility decrease with increasing temperature, as expected from the mean field model. We also find that the damping constant and the inverse relaxation time of this soft mode increases and decreases, respectively, with increasing temperature on the basis of the two models studied in the ferroelectric phase of LiNbO3. This indicates that our method of calculation is satisfactory to describe the observed behaviour of the ferroelectric-paraelectric phase transition in LiNbO3.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call