Abstract

An experimental study is performed of the mechanism of sulfur dioxide–hydrogen interaction (4Н2 + 2SО2 → S2 + 4H2О) at temperatures of 623, 673, 723, and 773 K and a pressure of 198 Torr. The mechanism is analyzed via mathematical modeling. It is found to be a chain reaction of hydrogen oxidation with sulfur dioxide, which results in the formation of molecular sulfur (S2). The process is characterized by negative Gibbs free energy ΔG723 = −49.950 kcal/mol. The potential energy surface of the (HOSO + HOSO) system is studied by various means of quantum chemistry, and the thermodynamic parameters of the НОSO + НОSO → SO + SO2 + Н2О reaction are determined. A new mechanism of the reaction, supplemented by elementary acts, is discussed. Good agreement is found between energies of activation determined experimentally and calculated using data from our numerical kinetic analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.