Abstract

The authors report on the interplay between magnetically ordered phases with temperature and magnetic field across compressively strained interfaces of thin La0.67Sr0.33MnO3 films on LaAlO3 substrates. From the temperature dependence of the magnetization and resistivity studies, they find two distinct temperature regimes, where this interplay is clearly exhibited. They ascribe this to the strain induced Jahn–Teller-like distortion that favors the stabilization of the d3z2−r2 orbitals and enhances superexchange between adjoining Mn atoms. The temperature and field sweep of the magnetization and electronic transport lead to a hybridization between the closely spaced energy levels of d3z2−r2 and dx2−y2 orbitals leading to the coexistence of ferromagnetic and antiferromagnetic phases. Such an observation, not reported earlier, offers new routes for the design and study of magnetic textures in variously strained interfaces between perovskite oxides.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.