Abstract

The kinetics of the HO_2 + ClO reaction was studied using the flash photolysis/ultraviolet absorption technique over the temperature range 203−364 K and pressure range 50−700 Torr of N_2. In contrast to previous work, the temperature dependence displayed linear Arrhenius behavior over the entire temperature range with the rate constant being described by the expression k(T) = 2.84 × 10^(-12) exp{(312 ± 60)/T} cm^3 molecule^(-1) s^(-1). Ab initio calculations of intermediates and transition states have been carried out on the singlet and triplet potential energy surfaces. These calculations show that the reaction proceeds mainly through the ClO−HO_2 complex on the triplet surface; however, collisionally stabilized HOOOCl formed on the singlet surface will possess an appreciable lifetime due to large barriers toward decomposition to HCl and HOCl. Termolecular rate calculations using ab initio parameters lead to a strong collision rate constant of ∼5 × 10^(-32) cm^6 molecule^(-2) s^(-1) for HOOOCl formation. This intermediate may be important under both laboratory and atmospheric conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.