Abstract

This paper presents computational evidence for the occurrence of diradical mechanism of self-initiation in thermal polymerization of methyl methacrylate. Two self-initiation mechanisms of interest were explored with first-principles density functional theory calculations. Singlet and triplet potential energy surfaces were constructed. The formation of two Diels-Alder adducts, cis- and trans-dimethyl 1,2-dimethylcyclobutane-1,2-dicarboxylate and dimethyl 2-methyl-5-methylidene-hexanedioate, on the singlet surface was identified. Transition states were calculated using B3LYP/6-31G* and assessed using MP2/6-31G*. The calculated energy barriers and rate constants with different levels of theory were found to show good agreement to corresponding data obtained from laboratory experiments. The presence of a diradical intermediate on the triplet surface was identified. When MCSCF/6-31G* was used, the spin-orbit coupling constant for the singlet to triplet crossover was calculated to be 2.5 cm(-1). The mechanism of monoradical generation via a hydrogen abstraction by both triplet and singlet diradicals from a third monomer was identified to be the most likely mechanism of initiation in spontaneous polymerization of methyl methacrylate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.