Abstract

We present detailed measurements of the temperature dependence of the Hall and longitudinal resistances on a quantum Hall device [(GaAs(7)] which has been used as a resistance standard at NIST. We find a simple power law relationship between the change in Hall resistance and the longitudinal resistance as the temperature is varied between 1.4 K and 36 K. This power law holds over seven orders of magnitude change in the Hall resistance. We fit the temperature dependence above about 4 K to thermal activation, and extract the energy gap and the effective g-factor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.