Abstract

Milk is used and processed under various environmental temperature, and its physicochemical properties are also strongly affected by temperature. Therefore, it is important to reveal the structure of milk at variable temperatures. In this study, the temperature dependence of the inner structure of bovine casein micelles in the temperature range of 10–40 °C was investigated by in-situ small-angle X-ray scattering (SAXS) method. The micelle size calculated from the SAXS profiles using a micelle model including water domains was almost independent of temperature. The water domain expanded and the distance between the colloidal calcium phosphates (CCP) decreased with increasing temperature. The number of CCPs in a micelle increased, because CCPs were newly formed by the transfer of calcium and inorganic phosphate from serum into the micelle. These structural changes occurred during the cooling process. Therefore, in the temperature range of 10–40 °C, the structure of the casein micelle varied sensitively with the temperature, and these structural changes were thermoreversible in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.