Abstract

The formulation for time- and temperature-dependent statistical static and fatigue strengths for carbon fiber reinforced plastics laminates is newly proposed based on the physically serious role of resin viscoelasticity as the matrix of carbon fiber reinforced plastics. In this study, this formulation is applied to the tensile strength along the longitudinal direction of unidirectional carbon fiber reinforced plastics constituting the most important data for the reliable design of carbon fiber reinforced plastics structures which are exposed to elevated temperatures for a significant period of their operative life. The statistical distribution of the static and fatigue strengths under tension loading along the longitudinal direction of unidirectional carbon fiber reinforced plastics were measured at various temperatures by using resin-impregnated carbon fiber reinforced plastics strands as specimens. The master curves for the fatigue strength as well as the static strength of carbon fiber reinforced plastics strand were constructed based on the time–temperature superposition principle for the matrix resin viscoelasticity. The long-term fatigue strength of carbon fiber reinforced plastics strand can be predicted by using the master curve of fatigue strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.