Abstract

Our developed accelerated testing methodology (ATM) based on the matrix resin viscoelasticity for the creep and fatigue failure life prediction of fiber reinforced polymers (FRP) was applied to the statistical prediction of long-term creep failure life for the longitudinal bending of unidirectional Carbon fiber reinforced plastic (CFRP) laminates which is an important basic item for the durability design of CFRP structures used for aircraft and others. As results, the statistical creep failure times measured under several constant bending loads at an arbitrary temperature for unidirectional CFRP laminates were agreed with the predicted results obtained by substituting the matrix resin viscoelasticity and the flexural static strengths of CFRP laminates statistically and easily measured at various temperatures into the formulation of ATM. The long-term creep strength under bending load at an arbitrary temperature predicted were compared with that under tension load obtained by our previous paper. It was clear that the creep strength under bending load degreases drastically with increase in time and temperature comparing with that under tension load; therefore, the effect of time and temperature on the creep failure life under bending load is larger than that under tension load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call