Abstract

Temperature dependence of the reliability characteristics of magnetic tunnel junctions (MTJs) with a thin (∼1 nm thick) MgO dielectric film were investigated by numerical analyses based on the E-model, 1/E-model, and power-law voltage V-model, as well as by measuring time-dependent dielectric breakdown (TDDB) degradation. Although the tunneling process giving rise to TDDB is still under debate, the temperature dependence of TDDB was much weaker using the 1/E model than the E-model or power-law model. The TDDB data measured experimentally in CoFeB/MgO/CoFeB MTJ devices also showed rather weak temperature dependence, in good agreement with the numerical results obtained from the 1/E-model considering the self-heating effect in MTJ devices. Moreover, we confirmed by interval voltage stress tests that some degradation in the MgO dielectric layer occurred. Based on our findings, we suggest that to characterize the reliability of MTJs, combined temperature measurements of TDDB and 1/E-model analyses taking the self-heating effect into account should be performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call