Abstract

The processes of excitation and relaxation of confined excitons in semiconductor quantum dots upon indirect high-energy excitation have been considered. The temperature behavior of photoluminescence of quantum dots in a SiO2 dielectric matrix has been described using a model accounting for the process of population of quantum-dot triplet states upon excitation transfer through mobile excitons of the matrix. Analytical expressions that take into account the two-stage and three-stage schemes of relaxation transitions have been obtained. The applicability of these expressions for analyzing fluorescence properties of semiconductor quantum dots has been demonstrated using the example of silicon and carbon nanoparticles in the thin-film SiO2 matrix. It has been shown that the complex character of the temperature dependences of the photoluminescence upon indirect excitation can be an indication of a multistage relaxation of excited states of the matrix and quantum dots. The model concepts developed in this study allow one to predict the form of temperature dependences of the photoluminescence for different schemes of indirect excitation of quantum dots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.