Abstract

Non-Condon effects in vibrational spectroscopy refers to the dependence of a molecule's vibrational transition dipole and polarizability on the coordinates of the surrounding environment. Earlier studies have shown that such effects can be pronounced for hydrogen-bonded systems like liquid water. Here, we present a theoretical study of two-dimensional vibrational spectroscopy under the non-Condon and Condon approximations at varying temperatures. We have performed calculations of both two-dimensional infrared and two-dimensional vibrational Raman spectra to gain insights into the temperature dependence of non-Condon effects in nonlinear vibrational spectroscopy. The two-dimensional spectra are calculated for the OH vibration of interest in the isotopic dilution limit where the coupling between the oscillators is ignored. Generally, both the infrared and Raman line shapes undergo red shifts with decrease in temperature due to strengthening of hydrogen bonds and decrease in the fraction of OH modes with weaker or no hydrogen bonds. The infrared line shape is further red-shifted under the non-Condon effects at a given temperature, while the Raman line shape does not show any such red shift due to non-Condon effects. The spectral dynamics becomes slower on decrease of temperature due to slower hydrogen bond relaxation and, for a given temperature, the spectral diffusion occurs at a faster rate upon inclusion of non-Condon effects. The time scales of spectral diffusion extracted from different metrics agree well with each other and also with experiments. The changes in the spectrum due to non-Condon effects are found to be more significant at lower temperatures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.