Abstract

The effects of process parameters on the densification, microstructures, and mechanical properties, as well as the temperature dependence of the mechanical properties, of a NiCoCr medium-entropy alloy fabricated with selective laser melting were studied. The results indicate that the microstructures and mechanical properties are not linearly related to the volume energy density (VED) but are affected by the scanning speed and laser power. The optimal process parameters are identified as a scanning speed of 800 mm/s and a laser power of 250 W, while the VED is only 57 J/mm3 lower than the highest value of 68 J/mm3. The yield strengths of the optimal sample are ∼819, ∼709 and ∼618 MPa at 77, 200, and 293 K, respectively. The temperature dependence of the mechanical properties is determined and verified by the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.