Abstract
Contrary to the conventional wisdom ‘bigger is better’, evolution at high temperature invariably leads to small individuals in Drosophila melanogaster. Natural selection is known to be responsible, meaning that genotypes that are small because of adaptation to high temperature must have some temperature dependent fitness advantage. In this study we consider both preadult and adult fitness components, and show that large adults from a cold adapted population significantly outperform small adults from a warm adapted population only when tested at low temperature and low larval density. In all other conditions ‘bigger is not necessarily better’, meaning that environmental influences are capable of altering the association between size and fitness. Yet, ‘smaller wasn’t better either’ under any condition, when considering the overall measure of fitness. Examination of individual fitness components revealed population by temperature interaction in preadult survival; this interaction is potentially capable of explaining the temperature specific advantage of small adult body size. At high temperature, the warm adapted population exhibits superior preadult survival while producing small adults. Geographical variation in adult body size seems to be the result of selection on larval growth and competitive strategies, resulting in alterations in the association between fitness components. © 2003 The Linnean Society of London, Biological Journal of the Linnean Society, 2003, 80, 717–725.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.