Abstract

ABSTRACTThe influence of the specimen temperature during MeV Kr irradiation on the extent of compositional disordering in GaAs-AlAs superlattices (SLs) has been determined. We have investigated whether radiation-enhanced diffusion (RED) could be employed to reduce the dose required to completely disorder a SL by ion implanation. Metalorganic chemical vapor deposition grown GaAs-AlAs SLs were implanted with 0.75 MeV Kr to a dose of 2×1016 cm−2 at various sample temperatures ranging from 133 K to 523 K. The extent of disordering induced by the irradiations was determined by Rutherford backscattering spectrometry and secondary ion mass spectrometry. For low temperature irradiations (133 K to 233 K), complete intermixing of the SL is observed. However, the extent of intermixing of the SL decreases with increasing specimen temperature between room temperature and 523 K. We propose two possible explanations to interpret these results: (i) that the amount of ion beam mixing decreases with increasing temperature; and (ii) that the RED coefficient is negative which suggests the existence of a miscibility gap in the GaAs-AlAs SL system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.