Abstract

The temperature dependence of austenite nucleation behavior within lath martensitic structure was investigated in an ultralow carbon 13%Cr-6%Ni martensitic stainless steel partially reversed at (austenite + ferrite) two phase region. The shape and nucleation site of the reversed austenite grains were varied depending on the reversion temperature; fine acicular austenite grains frequently formed along the lath boundaries at a temperature lower than 915 K, while the granular ones tended to nucleate mainly on the prior austenite grain boundaries at a higher temperature. In order to explain the temperature dependence of nucleation site transition, the difference in energetics of austenite nucleation between the lath boundary and the prior austenite grain boundary was discussed on the basis of the classical nucleation theory and FEM analysis. The calculation of the changes in interfacial energy and elastic strain for austenite nucleation suggested that the lath boundary acts as more preferential nucleation sites for austenite rather than the prior austenite grain boundary to reduce the increment of elastic strain when the reversion temperature is low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call