Abstract
The measurement of (15)N NMR spin relaxation, which reports the (15)N-(1)H vector reorientational dynamics, is a widely used experimental method to assess the motion of the protein backbone. Here, we investigate whether the (15)N-(1)H vector motions are representative of the overall backbone motions, by analyzing the temperature dependence of the (15)N-(1)H and (13)CO-(13)C(alpha) reorientational dynamics for the small proteins binase and ubiquitin. The latter dynamics were measured using NMR cross-correlated relaxation experiments. The data show that, on average, the (15)N-(1)H order parameters decrease only by 2.5% between 5 and 30 degrees C. In contrast, the (13)CO-(13)C(alpha) order parameters decrease by 10% over the same temperature trajectory. This strongly indicates that there are polypeptide-backbone motions activated at room temperature that are not sensed by the (15)N-(1)H vector. Our findings are at variance with the common crank-shaft model for protein backbone dynamics, which predicts the opposite behavior. This study suggests that investigation of the (15)N relaxation alone would lead to underestimation of the dynamics of the protein backbone and the entropy contained therein.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.