Abstract
This work aims to understand the difference in the correlations between the fluctuating temperature and the vorticity from that between the fluctuating temperature and the velocity in a turbulent cylinder near wake. Measurements are made at x/d = 10, 20 and 40, where x is the streamwise distance from the cylinder axis and d is the cylinder diameter, with a Reynolds number of 2.5×103 based on d and the free-stream velocity. The three components of the fluctuating velocity vector ui(i = 1, 2 and 3), vorticity vector ωi (i = 1, 2 and 3), and temperature θ in the plane of the mean shear are measured simultaneously with a multi-wire probe consisting of four X-hotwires and four cold wires. It is found that at x/d = 10, both correlations between uiand θ and between ωi and θ predominantly take place at St = 0.21, due to the concentric distribution of the Kármán vortices and the heat. With increasing x/d, the correlation between ωi (i = 1, 2 and 3) and θ drops rapidly, as a result of the weakened Kármán vortices; in contrast, the correlation between u1 and θ increases appreciably, largely due to an enhanced correlation between u1 and θ at low frequencies or scales of motions larger than the Kármán vortex. The slowly decreasing (along x) two-point autocorrelations of u1 and θ suggest that the very-large-scale motions (VLSMs) found in wall flows occur also in the turbulent wake and are responsible for the high correlation between u1 and θ at low frequencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.